
Digital Object Identifier (DOI) 10.1007/s100520100554
Eur. Phys. J. C 18, 765–777 (2001) THE EUROPEAN

PHYSICAL JOURNAL C
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Abstract. We determine the analytic expression of the damping rates for very soft moving quarks in an
expansion to second order in powers of their momentum in the context of QCD at high temperature.
The calculation is performed using the hard-thermal-loop-summed perturbation scheme. We describe the
range of validity of the expansion and make a comparison with other calculations, particularly those
using a magnetic mass as a shield from infrared sensitivity. We discuss the possible occurrence of infrared
divergences in our results and argue that they are due to magnetic sensitivity.

1. Introduction

One runs into difficulties when one applies the standard
loop expansion to gauge theories at high temperature T :
physical quantities like the dispersion laws become gauge
dependent. Early work on the QED plasma using a hydro-
dynamic approach is reported in [1], followed by [2], taking
account of one-loop quantum effects. The work of [3] dis-
cusses to one-loop order the QCD polarization tensor at
high temperature and the quark density and determines
the gluon dispersion laws to lowest order in the coupling
g. It shows that these dispersion laws are gauge invariant
but the one-loop-order gluon damping rates in the long-
wavelength limit are not. It also shows that while chro-
moelectric Debye screening does occur to lowest order in
the one-loop calculation, chromomagnetic screening does
not; a gauge invariant statement. The non-screening of
chromomagnetic fields at lowest order is also discussed in
[4–6]. The massless-quark spectrum to lowest order in the
coupling is described in [7] and the full quasiparticle spec-
tra to lowest order at high T for the whole momentum
range are given in [8]. The quasiparticle spectra are also
described in [9] for gluons and [10] for quarks.
The problem of gauge dependence of the damping rates

has been emphasized in works in which the gluon damp-
ing rates, particularly at zero momentum, have been cal-
culated to one-loop order in various gauges and schemes
and different results have been obtained [11]. It was real-
ized that the problem is related to the fact that at high
temperature, higher-loop diagrams can contribute to lower
orders in powers of the coupling [12]. In other words, the
standard loop expansion is no more an expansion in pow-
ers of g2. In a series of papers, Braaten and Pisarski de-
veloped a systematic method for an effective perturba-
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tive expansion that sums the so-called hard thermal loops
(HTL) into effective propagators and, equally important
for gauge theories, effective vertices [13–15]. Using this
method, the transverse-gluon damping rate γt(0) at zero
momentum was shown to be finite, positive and indepen-
dent of the gauge [16]. Later, a generating-functional for-
malism for high-T QCD in the HTL approximation was
developed [17] and a relation to the eikonal of a Chern–
Simons gauge theory was found [18]. From there, a hydro-
dynamic approach showed that the HTL approximation is
essentially “classical” [19].
Once the theory was developed this far, the important

question to answer is whether the HTL-summed pertur-
bation is reliable for calculations in QCD at high tempera-
ture. If so, it would constitute an adequate framework for
describing the properties of the quark–gluon plasma. Of
particular interest is the question of infrared sensitivity in
massless gauge theories, worsened at finite temperature by
the presence of the Bose–Einstein distribution which be-
haves like 1/k for very small gluon energies k: quantities
tend to diverge like powers of the infrared cut-off rather
than logarithmically as is the case at zero temperature
[20]. This infrared problem is prior to the advent of the
HTL scheme. It is for example shown in [21] that infrared
(and mass) singularities do occur but cancel in first-order
radiative corrections to the production of lepton pairs in
thermal (massless) QCD. It is therefore most interesting
to see if the HTL scheme is of any help in this regard. More
precisely, does the HTL-summed perturbation constitute
a workable framework in which infrared divergences are
cured consistently order by order in the coupling?
It turns out that the HTL summation dresses the mass-

less quarks and gluons, allowing them to acquire thermal
masses of order gT ,mf andmg respectively [3,7–10]. This
means that to this lowest order, gT , in effective perturba-
tion, the infrared region is “safe”. But as recalled, static
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chromomagnetic fields do not screen at this lowest order;
they are believed to do so at the next-to-leading order g2T ,
the so-called magnetic scale [4–6]. Therefore, the test for
the infrared safeness of the HTL-summed expansion starts
really in next-to-leading order calculations.
Much work has been carried out regarding the use

of the HTL summation up to next-to-leading order. For
example, it is shown in [22] that the HTL summation
cures the infrared logarithmic divergence in the produc-
tion rate of hard thermal photons in high-temperature
QCD with massless quarks. Also, the damping of fast mov-
ing fermions has been thoroughly investigated in [12,23,
20,24,25] for hot QCD and [26,27] for hot QED. In [26]
for instance, there is first performed a bare (i.e., not HTL-
summed) two-loop calculation and by taking the fermion
slightly off-shell, there occurs to this order cancelation of
infrared, both electric and magnetic, singularities. It is
then shown that the dominant on-shell graphs are those
dictated by the HTL summation. Also, it is shown in [20]
that it is in fact possible to find the leading contribu-
tion g2T ln 1/g to the damping rates for energetic (hard)
quarks and gluons in high-temperature QCD without hav-
ing recourse to the full machinery of the HTL summa-
tion program, a leading contribution already obtained for
quarks in [12]; see also [23].
It seems therefore that the infrared problem can some-

what be brought under control when it comes to describ-
ing fast moving (hard) quasiparticles. But how about slow
moving (soft) quarks and gluons, particularly those on-
shell? A first indication of the sensitivity of the HTL per-
turbation to slow moving particles can be found in [28]
where the production of non-thermalized soft real photons
in HTL-summed perturbation in high-T QCD is discussed.
It is argued that this scheme fails to screen mass singular-
ities in that it is not able to yield a finite contribution to
leading order to the production rate, a physical quantity.
However, the divergences involved in [28] are collinear in
nature and come from dressed vertices. In this regard, an
improved action has been proposed in [29] which incorpo-
rates an asymptotic mass m∞ that removes singularities
coming from light-like external momenta.
As to the importance of the magnetic sector and the

infrared sensitivity of the HTL scheme at next-to-leading
order calculations, this is well demonstrated in the works
[30–32]. Indeed, [30] calculates in HTL-summed pertur-
bation the non-abelian Debye mass at next-to-leading or-
der from the static limit of the polarization tensor. The
same physical quantity at the same order in the same
scheme is determined in [31], but from the correlator of
two Polyakov loops, a gauge invariant quantity. The pa-
per of [32] discusses the more general problem of next-
to-leading order non-abelian Debye screening in one-loop
HTL-summed perturbation. It argues that since the mag-
netic sector is nonperturbative in essence, the perturbative
next-to-leading order results may not be reliable. This is
explicitly shown in, for example, the strong dependence
of the analytic structure of the inverse of the static longi-
tudinal propagator on the infrared behavior of the trans-
verse gluons where the results differ significantly depend-

ing on whether we regularize the infrared sector by in-
troducing a magnetic mass1 or not. One other interest-
ing point discussed is the important role of the magnetic
mass in canceling the gauge dependent terms when ob-
taining Debye screening from the Polyakov-loop correla-
tor. Finally, comparison with lattice simulations indicates
that the magnetic-mass enhanced results are more com-
patible with the lattice ones; hence the importance of the
magnetic sector.
However, Debye screening is static in nature. It is

therefore interesting to examine dynamic on-shell quan-
tities in order to understand better the infrared behavior
of hot gauge theories in HTL-summed perturbation for
soft moving quasiparticles. It turns out that the damping
rates at lowest order for such (very) soft moving quasi-
particles are quite suitable. Indeed, the HTL quasipar-
ticle self-energies are real, so no damping is manifest at
order gT ; it starts at precisely the magnetic scale g2T .
Thus, to exhibit damping, one needs to add to the inverse
propagators the next-to-leading order contributions to the
self-energies which are, as dictated by the HTL-summed
expansion, one-loop corrections with soft loop momenta;
hence all propagators and vertices have to be HTL dressed.
The first such calculation is in [16] which determined

the damping rate γt(0) for transverse on-shell gluons with
zero momentum and found

γt(0) = 0.088Ncg
2T, (1)

where Nc is the number of colors. The analytic calcula-
tion of γt(p) to order (p/mg)2 where p is the momentum
of the very soft gluon was carried in [33]. The zeroth order
(1) was recovered and it was indicated that the coefficient
of the order (p/mg)2 may carry infrared divergences. The
infrared sensitivity of the on-shell gluon damping rates
has been emphasized in [34,35] where the damping rate
γl(0) for longitudinal gluons with zero momentum was
determined to lowest order, g2T , and found to be differ-
ent from γt(0) and infrared divergent. This is to be con-
trasted with the fact that at zero momentum, there must
be no difference between longitudinal and transverse glu-
ons [16]. This statement is emphasized in [36] where a
Slavnov–Taylor identity for the gluon polarization ten-
sor in Coulomb gauge is derived and when applied to
the next-to-leading order gluon self-energy, the equality
γl(0) = γt(0) is obtained2.
The next step must be the discussion of the damping

rates for very soft moving quarks at lowest order, g2T .
This is because quarks are also important in the structure
of hot QCD. Since they too acquire a thermal mass mf at
order gT and their damping rates start at the magnetic
scale g2T , it is all but legitimate to inquire about their
infrared sensitivity. There are already the two works [38,

1 Introduced as an infrared regulator, a point we come to
later in Sect. 3

2 It is assumed in [36] that the spatial next-to-leading order
HTL-summed gluon self-energy is isotropic at zero momentum.
Our explicit and direct calculations do not recover this isotropy.
This issue will be addressed in detail in [37]
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39] which determined independently the damping rates
γ±(0) for quarks with zero momentum and found

γ±(0) = a0Cfg
2T, (2)

where Cf = (N2
c − 1)/2Nc and a0 is a finite constant

depending on Nc and Nf , the number of flavors. For ex-
ample, for Nc = 3 and Nf = 2, we have a0 = 0.111 . . .
[38,39]. The result (2) for quarks resembles result (1) for
gluons. It is therefore interesting to determine the damp-
ing rates for moving quarks, but with very soft momenta.
In this article, we attempt to obtain to lowest order, g2T ,
an analytic expression for the damping rates γ±(p), where
p = pp̂ is the momentum of the quark, using only as in-
gredients what the HTL-summed expansion dictates.
Obtaining a compact expression for γ±(p) would be

ideal but hardly feasible technically. Rather, we attempt
to obtain an expression for γ±(p) in powers of p/mf up
to second order. This expansion is carried out early in the
calculation. We will specify in Sect. 3 its range of valid-
ity and argue that in order to get an explicit expression
for the damping rates, manipulating otherwise is practi-
cally intractable. In this work, we describe in detail how
we obtain the analytic expressions for the first three coef-
ficients a0, a1 and a2 involved in the expansion, see (42),
and we defer the numerical evaluation of these to future
work [40]. This is because it necessitates the extraction
of the potentially infrared-divergent pieces from the finite
contributions, something somewhat complicated. An ad-
ditional complication comes from the presence of two soft
masses, mg and mf , and the discussion makes it necessary
to work out each case apart. The numerical evaluation also
necessitates the handling of potential divergences coming
from soft light-like loop momenta. Experience with the
transverse-gluon damping rate γt(p) [37] indicates that
these latter divergences may ultimately be brought under
control, but the infrared ones would most likely persist.
One interesting aspect to mention is that the order p/mf

in γ±(p) does not vanish contrary to the gluonic case.
Preliminary results [40] tend to indicate that there are no
infrared divergences in the coefficient3 a1 but they tend
to appear in a2. On the one hand, this puts “some water”
into our arguments regarding the acceptability of our early
expansion in powers of the very soft external momentum.
On the other, recalling that the infrared divergences we
find in the gluonic sector start also at order (p/mg)2 [34,
35,37], it would be interesting to try to understand why
this is so.
Finally, it is useful to recall that the intensive use of

the damping rates as a mean to probe the properties of
finite-T gauge theories is also due to the fact that in
general, calculations in the full HTL-summed perturba-
tion are quite difficult beyond lowest order. The damping
rates are the simplest such non-trivial quantities to han-
dle. Indeed, though they come from one-loop graphs with
dressed propagators and vertices, they are defined through
the imaginary part of the effective self-energies, something

3 We already know from [38,39] that the first coefficient a0

is safe

that simplifies significantly the calculation. The only at-
tempt to correct in HTL-summed perturbation the quasi-
particle spectra to order g2T we are aware of is that of
[41].
This paper is organized as follows. In the next sec-

tion, we recall the definition of the quark damping rates
and write them in the context of the HTL-summed per-
turbation. Their determination amounts to that of the
imaginary part of the next-to-leading order quark self-
energy which we carry in detail in Sect. 4. Section 5 is
devoted to discussing the expansion of the effective self-
energy in powers of the external momentum and to the
manner with which we regularize the infrared region. A
comparison with other computational and regularization
schemes is also carried, most particularly those shifting
the pole of the effective gluon propagators with a mag-
netic mass. The final results are presented and discussed
in the last section.

2. Quark damping rates
in HTL-summed perturbation

We use the imaginary-time formalism in which the eu-
clidean momentum of the quark is Pµ = (p0,p) such that
P 2 = p2

0+p
2 with the fermionic Matsubara frequency p0 =

(2n + 1)πT , n an integer. Real-time amplitudes are ob-
tained via the analytic continuation p0 = −iω+0+ where
ω is the energy of the quark. A momentum is said to be
soft if both ω and p are of order gT ; it is said to be hard
if one is or both are of order T . The three -momentum p
of the on-shell quark is said to be very soft if p is much
smaller than gT , say of the order g2T and smaller. We
follow closely the notation of [13] and the HTL results we
quote in this section can all be found there; see also [14,
15].
The effective propagator for the quark can be written

as

∗∆F (P ) = −[γ+p∆+(P ) + γ−p∆−(P )], (3)
where γµ are the euclidean Dirac matrices, γ±p = (γ0 ±
iγ.p̂)/2 and ∆± = (D0 ∓Ds)−1, with

D0 = ip0 − m2
f

p
Q0

(
ip0

p

)
;

Ds = p+
m2

f

p

[
1− ip0

p
Q0

(
ip0

p

)]
, (4)

where the quark thermal mass is mf = (Cf/8)1/2gT and

Q0(x) =
1
2
ln
x+ 1
x− 1 .

The poles of ∆±(−iω,p) determine the dispersion laws4
ω±(p) to lowest order in g. For soft quarks, one has

ω±(p) = mf

[
1± p

3mf
+
1
3

(
p

mf

)2

∓ 16
135

(
p

mf

)3

4 (+) for real quarks and (−) for “plasminos” [42], only ther-
mally excited quasiparticles
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+
1
54

(
p

mf

)4

± 32
2835

(
p

mf

)5

− 139
12150

(
p

mf

)6

± . . .

]
. (5)

At this lowest order, gT , the ω±(p) are real and the
quarks are not damped. To get the damping rates to their
lowest order, one has to include in the dispersion rela-
tions the contribution from the effective quark self-energy
∗Σ(P ). Therefore, the inverse of the quark propagator be-
comes

∆−1
F (P ) =

∗∆−1
F (P )− ∗Σ(P ). (6)

The effective quark self-energy has also the decomposition
∗Σ = γ0 ∗D0 + iγ.p̂∗Ds where ∗D0 and ∗Ds are the two
functions to be determined in HTL-summed perturbation
theory. The inverse of the quark propagator is then

∆−1
F (P ) = −[γ0(D0 +∗ D0) + iγ.p̂(Ds +∗ Ds)]. (7)

The damping rates for quarks are γ±(p) ≡ −ImΩ±(p)
where Ω± are the poles of ∆F (−iΩ,p). Since the self-
energy ∗Σ is g times smaller than ∗∆−1

F , we have to lowest
order

γ±(p) =
Im∗f±(−iω, p)
∂ωf±(−iω, p) |ω=ω±(p)+i0+ , (8)

where f± = D0 ∓Ds, ∗f± = ∗D0 ∓ ∗Ds and ∂ω stands for
∂/∂ω. Using the expressions in (4), it is easy to expand
the denominator in the above relation in powers of p/mf .
One then obtains

γ±(p) =
1
2

[
1± 2

3
p

mf
− 2
9

(
p

mf

)2

+ . . .

]
× Im∗f±(−iω, p)|ω=ω±+i0+ . (9)

We see that determining γ±(p) to lowest order in g
amounts to calculating the imaginary part of the next-
to-leading order quark self-energy.
The HTL-summed perturbation [13–15] dictates that

the next-to-leading order quark self-energy is given in
imaginary-time formalism by

∗Σ(P ) = ∗Σ1(P ) + ∗Σ2(P ), (10)

where we have

∗Σ1(P ) = −g2Cf

× Trsoft[ ∗Γµ(P,−Q;−K) ∗∆F (Q)
× ∗Γ ν(−P,Q;K) ∗∆µν(K)], (11)

and

∗Σ2(P ) = − i
2
g2CfTrsoft

×[ ∗Γ̃µν(P,−P ;K,−K) ∗∆µν(K)]. (12)

K is the soft gluon loop momentum, Q = P −K and

Tr ≡ T
∑
k0

∫
d3k

(2π)3
,

with k0 = 2nπT , a bosonic Matsubara frequency. The sub-
script “soft” means that only soft values of K are allowed
in the integrals; hard values have dressed the propagators
and vertices. Note that since the loop momentum K is
soft, both propagators and vertices involved in (10) must
be dressed.
The effective gluonic propagator ∗∆µν(K) is taken in

the strict Coulomb gauge where it has a simplified struc-
ture. It is given by ∗∆00(K) = ∗∆l(K), ∗∆0i(K) = 0 and
∗∆ij(K) = (δij − k̂ik̂j) ∗∆t(K) with ∗∆l and ∗∆t having
the following expressions:

∗∆l(K) =
1

k2 − δΠl(K)
;

∗∆t(K) =
1

K2 − δΠt(K)
, (13)

where δΠl(K) = 3m2
gQ1 (ik0/k) and

δΠt(K) =
3
5
m2

g

[
Q3

(
ik0

k

)
−Q1

(
ik0

k

)
− 5
3

]
.

Qi (ik0/k) is a Legendre function of the second kind and
the gluon thermal mass is mg = (Nc + Nf/2)1/2gT/3.
The effective (dressed) vertices ∗Γ intervening in (10) are
of the form

∗Γ = Γ + δΓ, (14)

where Γ is the bare (tree) vertex and δΓ is the corre-
sponding hard thermal loop. The two effective vertices
that enter the calculation of the effective self-energy (10)
are the effective quark–gluon vertex:

∗Γµ(P,Q;R) = γµ +m2
f

∫
dΩs

4π
SµS/

PSQS
, (15)

where the second term is the hard thermal loop, and the
effective two-gluons–quark–antiquark vertex:

∗Γ̃µν(P,−P ;K,−K) = −2m2
f

∫
dΩs

4π

× SµSνS/

PS(P +K)S(P −K)S
. (16)

Note that the bare two-gluons–quark–antiquark vertex is
zero so that the corresponding effective vertex is just the
hard thermal loop. In both (15) and (16), S ≡ (i, ŝ) and
Ωs is the solid angle of ŝ.
The task is to attempt to get an expression for the

imaginary part of the effective quark self-energy ∗Σ(P ).
The “natural” sequence of steps to follow is first to per-
form the angular integrations in the dressed vertices (15)
and (16). Next to do is the Matsubara sum in (10). Only
then the continuation to real quark energies p0 = −iω+0+
can be taken and the on-shell condition enforced. Last is
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to find a way to perform the integration over the gluon
loop three-momentum k. However, given the complicated
expressions we are faced with, it is practically very difficult
to follow this sequence of operations. What we do in this
work is first expand the effective self-energy in powers of
the quark momentum p/mf . This allows for an easy angu-
lar integration over Ωs. Only then do we perform the Mat-
subara sum, this by using the spectral representation of
the different quantities involved. The angular integration
over Ωk is subsequently done and the remaining integrals
can be calculated numerically. We discuss this procedure
in more detail in the next section.

3. Regularization and expansion
in external momentum

The expansion in powers of the external momentum of
the HTL-summed next-to-leading order self-energies can
be questioned from the outset in view of the fact that
infrared divergences do appear in next-to-leading order
physical quantities like the damping rates [35]. Are these
divergences genuine or merely artifacts due to the method
used? First, recall that we are considering only very soft
external momenta. Note also that the HTL framework it-
self allows for an expansion of quantities in powers of the
soft external momenta. For example, the gluon and quark
on-shell energies ω(p) are obtained in the literature in the
form of a series in powers of soft p [43,15]. The same is
true for the residue and cut functions intervening in the
spectral decomposition of the effective propagators [35].
It is therefore legitimate to expect the perturbation built
on hard thermal loops (these being considered as a zeroth
order approximation) to be analytic in very soft p, and
hence admit an expansion in powers of such momenta.
Also, such an expansion is not proper for this work; it has
previously been used in the literature, for example in [44].
There is of course a distinction between the analyticity

in p and that in g. For example, the standard loop expan-
sion of QCD is in powers of g2, whereas in HTL-summed
perturbation the expansion is in powers of

√
g2. The same

is true for other theories like the prototype λφ4 theory [46]
and QED [47]. This may introduce a non-analyticity with
respect to g in some quantities, but does not necessarily
change drastically the analytic behavior of these quan-
tities with respect to very soft p. Take for example the
estimation of the soft gluon damping rates made in [45]:

γt,l(p) ∼ −g2NcT

4π
ln gvt,l(p), (17)

where vt,l(p) are the corresponding group velocities. These
rates are clearly non-analytic in small g, but perfectly an-
alytic in p: they even tend to zero5 as p →0.
Regarding the damping rates, our starting position is

that the quark–gluon plasma is to be a stable phase of
hadronic matter, at least for very soft excitations [48].

5 A non-acceptable limit as we will discuss shortly

QCD at high temperature in the (lowest-order) HTL ap-
proximation is “finite”. At next-to-leading order, HTL-
summed perturbation yields finite and positive damping
rates for zero-momentum on-shell quarks and transverse
gluons. The stability criterion ensures that we must expect
the damping rates to remain finite and positive for non-
zero very soft momenta. This translates into expecting
the damping rates to admit a series expansion in powers
of these very soft external momenta. This of course does
not rule out a possible loss of analyticity for larger values
of p, even just soft values. That would simply indicate new
physics to explore. But because of the stability criterion,
the analyticity must be preserved for very soft momenta.
This is one important check to use in order to discuss
the consistency and completeness of a given calculational
scheme like the HTL-summed perturbation.
Expecting an infrared problem, we introduce an in-

frared cut-off η > 0 such that
∫ +∞
0 dk in (11) and (12) is

replaced by
∫ +∞

η
dk. The cut-off η is fixed for the rest of

the calculation. It is physically useful to see it as repre-
senting the magnetic scale g2T . This means that k is never
smaller than η. In other words, we are summing contribu-
tions from all soft momenta6 k but not the very soft ones,
i.e., those smaller than η. We always regard the external
momentum p as smaller than η. We are therefore always
working in the kinematic region 0 ≤ p < η ≤ k. This
allows for the expansion in powers of p of all quantities
that are functions of q = |p − k|. This is true in partic-
ular for 1/QS and the effective propagators ∗∆(Q). The
expansion of 1/PS does not pose a problem in itself.
It is useful to emphasize once more that our calcula-

tion sums the contributions from only the soft integration
momenta η ≤ k: the very soft momenta 0 ≤ k < η are
systematically excluded and the hard region is cut by the
spectral densities [35]. If the integration is not sensitive to
the very soft region (the magnetic sector), then the sub-
sequent limit η → 0 in the final result should be smooth.
If on the contrary there is sensitivity, it would mean that
important contributions from this sector may be “missed”
by the HTL-summed perturbation. This is the essence of
our point. Indeed, recall that regarding the self-energies,
the HTL scheme discusses the two scales T (hard) and
gT (soft), whereas with g and T , one has a hierarchy of
scales gnT with n a non-negative integer. As a matter of
fact, in [49] it is argued that there may be scales between
T and gT that play a significant role, and so n may not
even be an integer. Since the HTL scheme, when built,
does not consider effects like magnetic screening which
(are believed to) arise non-perturbatively at order g2T
and are not present at the HTL level, a perturbation built
on the HTL summation may not be able to reproduce
them. What it can do is to bring what is contributed from
the soft region to the very soft one. Therefore, excluding
the very soft region from the k-integration as we do may
not be all unreasonable a thing to do. We think that the
presence of magnetic sensitivity which manifests itself in

6 Hard momenta are already summed in the hard thermal
loops
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infrared divergences indicates the very presence of these
magnetic effects that the HTL scheme seems to be unable
to accommodate.
Let us compare our calculation of the damping rates

with the estimation (17) mentioned above. This latter is
different in many respects from the one we carry. It is ob-
tained in the kinematic region where the loop momentum
k is restricted to the very soft region (0 ≤ k < η in our
notation) whereas p is just soft, of order gT [45]. In some
sense there it is the very soft momenta that are integrated
out; the soft ones are disregarded, something opposite to
what we do. Result (17) cannot be carried to the very
soft region p < η, in particular to the point p → 0 for it
will give zero (using the expressions of the group velocities
at very soft momenta) whereas the damping rates there
are finite. At the same time, our results can never be car-
ried to the region p > η. Clearly then, it should not be
problematic if different analytic results are obtained. In
fact, if really different results are obtained, which is the
case, it only constitutes a further indication of the sensi-
tivity of the HTL scheme to the magnetic sector. Equally
interesting to note in the estimate (17) is that, in order
to screen the divergent behavior at very soft momenta k,
a regularization is used, which amounts to introducing a
magnetic mass mmag in the otherwise divergent propaga-
tors. It is clear that screening of chromomagnetic fields, if
it occurs, is not necessarily going to manifest itself by a
simple shift of the pole in the corresponding propagator
by a momentum-independent magnetic mass [32].
The presence of magnetic effects not handled by the

HTL scheme is discussed in [44]. It is argued there that for
distances to order 1/T , ordinary perturbation (the stan-
dard loop expansion) is reliable. For distances to order
1/gT , the effective theory that screens static chromoelec-
tric fields (the Braaten–Pisarski scheme) is reliable and
it can be treated in perturbation. However, for distances
to order 1/g2T , one needs another effective theory which
cannot be treated by perturbation theory (treated by lat-
tice simulations for example). This last statement is em-
phasized by comparing the asymptotic behavior of the
Polyakov-loop correlator determined from a magnetic la-
grangian with that determined from an electric lagrangian
with an ad hoc magnetic mass mmag. With the magnetic
lagrangian, an exponential decay governed by the lowest
glueball state is obtained, an asymptotic behavior different
from the one obtained from the magnetic-mass enhanced
electric lagrangian. A comparison of these results with lat-
tice simulations indicates that the glueball-state result is
more compatible with the lattice ones. One interesting in-
ference one can draw from the above comments is that
regularizing the infrared sector in HTL perturbation with
a simple magnetic mass may not be the best description
of magnetic effects, in particular if those are not incorpo-
rated in the scheme itself.
It is important to stress that from a pure computa-

tional standpoint, matters are not straightforward if we
defer in the self-energies the expansion in p after the an-
gular integrals. Indeed, one has to deal with expressions
quite complicated and involved, something of the sort

T
∑
k0

∫
d3k

∫
dΩs1

∫
dΩs2

× f(ŝ1, ŝ2)
PS1KS1PS2QS2

∗∆(K) ∗∆(Q).

The Matsubara sum can be performed if the effective prop-
agators, 1/KS1 and 1/QS2 are replaced by their respec-
tive spectral decomposition; see below. But this will bring
in more than one energy denominator, which would com-
promise the straightforward extraction of the imaginary
part of the effective self-energy. More serious a problem
is the subsequent angular integration which will be very
difficult, it not impossible, to perform [14].
Finally, it turns out that for quarks, the expansion is

in powers of p/mf and not in (p/mf )2, as is the case for
gluons (where mf is replaced by mg) [33–35]. Preliminary
results [40] tend to indicate that the second coefficient
(that of p/mf ) is infrared safe together with the first one.
This may suggest then that the expansion in powers of
p is not solely to “blame” for infrared-divergent damping
rates; other effects may be in play.

4. Imaginary part
of one-loop HTL-summed quark self-energy

Now we present the calculation of the HTL-summed next-
to-leading order quark self-energy from which we extract
the imaginary part. We first describe how we get an ex-
pression for Im ∗Σ1(P ) defined in (11) and then for
Im ∗Σ2(P ) defined in (12). From now on, we take mf = 1.
This will simplify the final expressions we obtain. There
remains another soft mass in the problem, mg, and so we
define

m = mg/mf =
4
3

√
Nc(Nc +Nf/2)

N2
c − 1 .

It is easy to see that we always have m > 1.

4.1. Calculation of Im ∗Σ1(P )

Using the structure of the fermion propagator (3) and that
of the gluon propagator in the strict Coulomb gauge given
just before (13), we see that ∗Σ1(P ) is composed of four
terms:

∗Σ1(P ) =
8
T 2

∑
ε=±

T
∑
k0

∫
d3k

(2π)3
[ ∗Γ 0(P,−Q;−K)

× ∆ε(Q)γεq
∗Γ 0(−P,Q;K) ∗∆l(K)

+ ∗Γ i(P,−Q;−K)∆ε(Q)γεq
∗Γ j(−P,Q;K)

× (δij − k̂ik̂j) ∗∆t(K). (18)

The first two terms denoted ∗Σεl(P ), those with the longi-
tudinal gluon propagator, are calculated separately from
the two others denoted ∗Σεt(P ). We will illustrate the dif-
ferent steps of the calculation for ∗Σ−l(P ). Using the def-
inition of the effective vertex (15) and making the change



A. Abada et al.: Damping of very soft moving quarks in high-temperature QCD 771

of integration variable K → P −K, we have

∗Σ−l(P ) =
8
T 2T

∑̃
k0

∫
d3k

(2π)3

×
[
γ+k −

∫
dΩs

4π
2iS/+ γ0γ.k̂S/+ S/γ.k̂γ0

2PSKS

−
∫
dΩs1

4π

∫
dΩs2

4π
S/1γ−kS/2

PS1KS1PS2KS2

]
× ∆−(K) ∗∆l(Q). (19)

The tilde over the sum sign indicates that k0 is fermionic.
Let us start with I1, the term in (19) where there is one

solid-angle integral over Ωs. This latter is carried out in a
reference frame where k̂ is the principal axis (i.e., the “z-
axis”). The solid angle is then Ωs = (θ, ϕ) such that k̂.̂s =
cos θ and p̂.̂s = cosψ cos θ−sinψ sin θ sinϕ, where cosψ =
k̂.p̂. Also, we have γ.̂s = γ′1 sin θ cosϕ + γ′2(sinψ cos θ +
cosψ sin θ sinϕ) + γ′3(cosψ cos θ− sinψ sin θ sinϕ), where
{γ′i} are the three spatially rotated Dirac matrices written
in a reference frame where p̂ is the principle axis and k̂
in the (y, z)-plane. They are fixed in the integration over
Ωs. Performing all the (anti)commutations, we have

I1 =
8
T 2T

∑̃
k0

∫
d3k

(2π)3

∫
dΩs

4π
γ0(1− cos θ) + iγ.k̂ − iγ.̂s

PSKS

× ∆−(K) ∗∆l(Q). (20)

In order to be able to perform with ease the above solid-
angle integral, we use the expansion

1
PS

=
1
ip0

[
1− p.̂s

ip0
− p.̂s2

p2
0
+ . . .

]
. (21)

This expansion is valid in the region p < |ip0|, a condition
always satisfied before analytic continuation and after.
“Before” because p0 = (2n + 1)πT and p ∼ g2T . “After”
because for very soft momenta, ip0 = mf+O(p/mf ) ∼ gT ;
see (5). The solid-angle integral in (20) then reads

1
ip0

∫ 2π

0
dϕ
∫ π

0
dθ sin θ

γ0(1− cos θ) + iγ.k̂ − iγ.̂s
ik0 + k cos θ

×
[
1− p

ip0
(cosψ cos θ − sinψ sin θ sinϕ)

− p2

p2
0
(cosψ cos θ − sinψ sin θ sinϕ)2 + . . .

]
.

The angular integrations are now straightforward and we
obtain

I1 =
8
T 2T

∑̃
k0

∫
d3k

(2π)3
1
ip0k

[γ0
[
−1 +

(
1 +

ik0

k

)
Q0k

− px

ip0

(
1 +

ik0

k

)(
1− ik0

k
Q0k

)
+

p2

p2
0

[
x2
(
1
3
+
ik0

k
− k2

0

k2 +
k2
0

k2

(
1 +

ik0

k

)
Q0k

)

− 1
2
(1− x2)

(
−2
3
+
ik0

k
− k2

0

k2

+
(
1 +

ik0

k

)(
1 +

k2
0

k2

)
Q0k

)]]
+ iγ.k̂

[
Q0k − px

ip0

(
1− ik0

k
Q0k

)
+

p2

p2
0

[
x2 ik0

k

(
1− ik0

k
Q0k

)
− 1
2
(1− x2)

(
ik0

k
+
(
1 +

k2
0

k2

)
Q0k

)]
− iγ′2 sinψ

[
1− ik0

k
+

px

2ip0

(
3
ik0

k
+
(
1 + 3

k2
0

k2

)
Q0k

)
+

p2

p2
0

[
x2
(
1
3
+ 2

k2
0

k2 − ik0

k

(
1 + 2

k2
0

k2

)
Q0k

)
− 1
2
(1− x2)

(
2
3
+
k2
0

k2 − ik0

k

(
1 +

k2
0

k2

)
Q0k

)]]
− iγ′3

[
x

(
1− ik0

k
Q0k

)
+

p

ip0

[
x2
(
ik0

k
+
k2
0

k2Q0k

)
− 1
2
(1− x2)

(
ik0

k
+
(
1 +

k2
0

k2

)
Q0k

)]
+

p2

p2
0

[
x3
(
ik0

3k
− ik

3
0

k3 − k4
0

k4Q0k

)
− 3
2
x(1− x2)

(
2
3
+
k2
0

k2 − ik0

k

(
1 +

k2
0

k2

)
Q0k

)]]
+ . . .]∆−(K) ∗∆l(Q), (22)

where x = cosψ and Q0k stands for Q0(ik0/k).
The next step is to perform the integrals over the solid

angle of k̂ in a reference frame where p̂ is the principle
axis. For this, it is most useful to develop all functions of
q = |p − k| around k for (very) small p. The validity of
these expansions is discussed in the previous section. In
particular, here we need

∗∆l,t(q0, q) =
[
1− px∂k +

p2

2

(
1− x2

k
∂k + x2∂2

k

)
+ . . .

]
× ∗∆l,t(q0, k). (23)

The solid angle of k̂ is Ωk = (ψ, α) and we have the rela-
tion

γ′1 = γ1 cosα− γ2 sinα; γ′2 = γ1 sinα+ γ2 cosα;
γ′3 = γ3, (24)

where the {γi} are the (fixed) spatial Dirac matrices. Us-
ing (23), the integrations over ψ and α become straight-
forward. We obtain

I1 =
4

π2T 2T
∑̃
k0

∫ +∞

η

dk
k

ip0
∆−K

×
[
γ0
[
−1 +

(
1 +

ik0

k

)
Q0k
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+
p2

3

[
1
p2
0

(
1−

(
1 +

ik0

k

)
Q0k

)
+
1
ip0

(
1 +

ik0

k

)(
1− ik0

k
Q0k

)
∂k

−
(
1−

(
1 +

ik0

k

)
Q0k

)(
1
k
∂k +

1
2
∂2

k

)]]
+
1
3
iγ3p

(
1−

(
1 +

ik0

k

)
Q0k

)(
− 1
ip0
+ ∂k

)
+ . . .

]
× ∗∆l(q0, k), (25)

where ∆−K stands for ∆−(K). Note the introduction of
the infrared cut-off η. Note also that terms proportional
to p do not vanish, contrary to what happens for gluons
[33,34].
The next step for I1 is to perform the Matsubara sum.

This will be done after we get for the first term I0 in
∗Σ−l(P ) (the one that involves no angular integrals) and
the third term I2 (the one that involves two such integrals)
expressions similar to (25). As for I0, the calculation is
simpler: only an integral over Ωk using the expansion (23)
is needed. We get

I0 =
2

3π2T 2T
∑̃
k0

∫ +∞

η

dkk2∆−K

×
[
γ0
[
3 + p2

(
1
k
∂k +

1
2
∂2

k

)]
− iγ3p∂k + . . .

] ∗∆l(q0, k). (26)

As for I2, more work is needed. But we are fortunate here
since ŝ1 is not “coupled” to ŝ2 so that each solid-angle
integral can be performed independently from the other.
Each integral is thus performed along the lines shown for
I1, and so, there is no need to re-display the steps. After
the two integrations are done, we multiply the two results,
keeping terms to order p2 only and taking care of the Dirac
algebra. We obtain

I2 =
2

π2T 2T
∑̃
k0

∫ +∞

η

dk
p2
0
∆−K

[−γ0a2
−

+ iγ3 p

3
a2

−

(
− 2
ip0
+ ∂k

)
+ γ0 p

2

3

[
1
2p2

0

(
3−

(
2− 6 ik0

k

)
a−

+
(
5− 2 ik0

k
− 3k

2
0

k2

)
a2

−

)
+

2
ip0

a−

(
1 +

ik0

k
a−

)
∂k − a−

(
1
k
∂k +

1
2
∂2

k

)]
+ . . .] ∗∆l(q0, k), (27)

where we have denoted aε = 1+ ε (1− ε(ik0/k))Q0k, ε =
±. We can now put together I0, I1 and I2 to get a first
expression for ∗Σ−l(P ). Since ∗Σ+l(P ) is calculated in
the same way and the only differences are mere signs, it is
more economical to write the result for both terms in one
single expression. We find

∗Σεl(P ) =
2

π2T 2T
∑̃
k0

∫ +∞

η

dkk2∆εK

×
[
γ0
(
1 +

2ε
ip0k

aε − 1
p2
0k

2 a
2
ε

)
+iγ3 p

3

[
ε∂k +

2
ip0k

aε

(
ε

ip0
+ ∂k

)
− ε

p2
0k

2 a
2
ε

(
2ε
ip0
+ ∂k

)]
+γ0 p

2

3

[(
1
k
∂k +

1
2
∂2

k

)
+
2
ip0k

(
− ε

p2
0
aε +

1
ip0

(
1− ε

ik0

k
aε

)
∂k

+ εaε

(
1
k
∂k +

1
2
∂2

k

))
+
1

p2
0k

2

(
1
2p2

0

(
3− 2

(
1 + 3ε

ik0

k

)
aε

+
(
5 + 2ε

ik0

k
− 3k

2
0

k2

)
a2

ε

)
− 2ε
ip0

aε

(
1− ε

ik0

k
aε

)
∂k

−a2
ε

(
1
k
∂k +

1
2
∂2

k

))]
+ . . .

]
∗∆l(q0, k). (28)

Now we are ready to perform the Matsubara sum over
fermionic k0 . We will need the spectral decomposition of
∆ε(k0, k), ∗∆l(q0, k) and Q0(ik0/k). They are worked out
in [43,15] and are given by

∆ε(k0, k) =
∫ 1/T

0
dτeik0τ

∫ +∞

−∞
dωρε(ω, k)

× (1− ñ(ω))e−ωτ ;

∆t,l(k0, k) =
∫ 1/T

0
dτeik0τ

∫ +∞

−∞
dωρt,l(ω, k)

× (1 + n(ω))e−ωτ ;

Q0(ik0/k) =
∫ 1/T

0
dτeik0τ

∫ +∞

−∞
dωρ0(ω, k)

× (1− ñ(ω))e−ωτ . (29)

n(ω) (ñ(ω)) is the Bose–Einstein (Fermi–Dirac) distribu-
tion and the rho’s are the spectral densities. Before replac-
ing the above quantities, it is first necessary to rearrange
terms in (28) in such a way that products of only two such
functions appear. The reason behind this is to ensure the
appearance of only one energy denominator just before
the extraction of the imaginary part; see below. For this
purpose, we use the following easy-to-check relations:

aε∆ε = −εk[1− (ik0 − εk)∆ε],
a2

ε∆ε = −εk[aε + εk(ik0 − εk)[1− (ik0 − εk)∆ε]].
(30)

After rearrangements, many terms happen to be real.
Dropping these will yield

Im ∗Σεl(P ) =
2

π2T 2 ImT
∑̃
k0

∫ +∞

η

dkk2
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×
[
γ0

((
1 +

ik0 − εk

ip0

)2

∆ε +
ε

p2
0k
a′

ε

)

−iγ3 p

3

[
2
ik0 − εk

p2
0

(
1 +

ik0 − εk

ip0

)
∆ε

−ε
(
1 +

ik0 − εk

ip0

)2

∆ε∂k − 1
p2
0k
a′

ε

(
2ε
ip0
+ ∂k

)]

+γ0 p
2

3

[(
3

2p4
0k

2 − 2 ik0 − εk

ip3
0

+
(ik0 − εk)2

2p4
0

(
5 + 2ε

ik0

k
− 3k

2
0

k2

)
−ε ik0 − εk

p4
0k

(
1 + 3ε

ik0

k

))
∆ε

+
(
1
k

− 2
p2
0k
+ 2
ik0(ik0 − εk)

p2
0k

+ 2
ik0 − εk

ip0k

+2
ik0(ik0 − εk)2

ip3
0k

− 2 ik0 − εk

ip3
0k

− (ik0 − εk)2

p2
0k

)
∆ε∂k

+
1
2

(
1 +

ik0 − εk

ip0

)2

∆ε∂
2
k

− ε

2p4
0k

(
5 + 2ε

ik0

k
− 3k

2
0

k2

)
a′

ε

−ε
(
2
ik0

ip3
0k

2 − 1
p2
0k

2

)
a′

ε∂k

+
ε

2p2
0k
a′

ε∂
2
k

]
+ . . .

]
∗∆l(q0, k). (31)

Here a′
ε = aε −1 = ε (1− ε(ik0/k))Q0k. Since ik0 appears

in (31) only in the numerator of fractions, we can sum over
it using the spectral decompositions (29). At each time,
we are left with two frequency integrals together with the
one over k. Now we are allowed to take the real-energy
analytic continuation ip0 → ω±(p) + i0+. But before this,
every eip0/T has to be replaced with −1 except in the
energy denominators which occur only once in each term,
thanks to the rearrangements we made using (30). The
extraction of the imaginary part becomes straightforward
if we use the relation 1/(x+ i0+) = Pr(1/x)− iπδ(x). We
obtain the following expression:

Im ∗Σεl(P ) =
2
πT

∫ +∞

η

dk
∫ +∞

−∞
dω
∫ +∞

−∞

dω′

ω′

×δ(ω± − ω − ω′)
[
γ0(k2(1 + ω − εk)2ρε

−(k − εω)ρ0)

+
p

3
[∓2γ0(ω − εk)(k2(1 + ω − εk)ρε + ερ0)

+iγ3(2k2(ω − εk)(1 + ω − εk)ρε

+εk2(1 + ω − εk)2ρε∂k + (ω − εk)ρ0(2ε+ ∂k))]

+
p2

3

[
γ0
[(
3
2

− ε(ω − εk)(k + 3εω) +
2
3
k2(ω − εk)

+
1
2
(ω − εk)2(3k2 + 2εωk + 3ω2)

)
ρε

+k(3 + 4(ω − εk) + k2 − ω2 − 2ω(ω − εk)2)ρε∂k

+
k2

2
(1 + ω − εk)2ρε∂

2
k

+
ε

2k2 (ω − εk)(3k2 + 2εωk + 3ω2)ρ0

− ε

k
(ω − εk)(2ω − 1)ρ0∂k +

ε

2
(ω − εk)ρ0∂

2
k

]
∓1
3
iγ3[2k2(ω − εk)(2 + 3ω − 3εk)ρε

+2εk2(1 + ω − εk)(ω − εk)ρε∂k

+2(ω − εk)ρ0(3ε+ ∂k)]] + . . .] ρ′
l. (32)

Recall that we have setmf = 1. The notation is as follows:
ρε,0 = ρε,0(ω, k); ρ′

l = ρl(ω′, k). In the above expression,
we have used ñ(ω) � 1

2 and n(ω) � T/ω. This is because
only soft values of ω and ω′ are to contribute. The result-
ing integrals are to be performed numerically, but after
the extraction of potential infrared divergences.
It remains to calculate the two other contributions to

Im ∗Σ1, those coming from transverse gluons in (18). The
final result is as follows:

Im ∗Σεt(P ) =
2
πT

∫ +∞

η

dk
∫ +∞

−∞
dω
∫ +∞

−∞

dω′

ω′

×δ(ω± − ω − ω′)
[
γ0
[(

−1
2
(2k + ε)2

−1
2
(k2 − ω2)2 − ε(2k + ε)(k2 − ω2)

)
ρε

+
1
2k2 (εω + k)(k2 − ω2)ρ0

]
+
p

3
[∓γ0 [−((k2 − ω2)2 + 2(1 + εk)(k2 − ω2)

+2εk + 1)ρε +
1
k2 (k + εω)(k2 − ω2)ρ0

]
+iγ3

[(
−(k2 − ω2)2 − 2ε

k
(k2 − ω2)(k2 + εωk − ω2)

+4ω(ω − εk) + 4ε
ω2

k
− 2ω − 3− 2ε

k

)
ρε

+ε
(
1
2
(k2 − ω2)2 + 2εk(k2 − ω2) + 3k2 − ω2

+2εk +
1
2

)
ρε∂k

+
(
2
ω

k3 +
1
k2 (k + εω)

)
(k2 − ω2)ρ0

− ε

2k2 (k + εω)2(k − εω)ρ0∂k

]]
+
p2

3

[
γ0
[(

−k2(ω − εk)2
(
1 + ε

ω

k

)(
1 + ε

ω3

k3

)
+k(ω − εk)

(
2
3
k +

11ε
3
ω − ω2

k
− 3εω

3

k2 +
ω4

k3

)
−k

2
(ω − εk)

(
7ε
3

− 13ω
3k

− 47ε
3k2ω

2 − ω3

k3

)
−k
(
4ε
3

− 10ω
3k

+
2ε
3k2ω

2 +
2ω3

k3

)
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−4
9

− 25ε
3k

ω + 2
ω2

k2 +
14ε
3k
+

ω

k2 − 3
2k2

)
ρε

+
(
ω

k
(k2 − ω2)2 − 1

2k
(k2 − ω2)(k2 − ω2 − 4εkω)

+
1
k
(ω − εk)

(
4
3
k2 − 2ε

3
kω − 2ω2

)
−5
3
k + 2εω +

ω2

k
− 4ε
3
+
ω

k
− 1
2k

)
ρε∂k

+
1
4
(−(ω2 − k2)2 + 4εk(ω2 − k2)− 6k2 − 4εk

+2ω2 − 1)ρε∂
2
k − ε

((
1 + ε

ω

k

)(
1 + ε

ω3

k3

)
+
ω

k2

(
3 + 2ε

ω

k
− ω2

k2

)
− 1
2k2

(
1 + 2ε

ω

k
− 3ω

2

k2

))
×(ω − εk)ρ0 − ε

(
1
2k3 − ω

k3

)
×(ω2 − k2)(ω + εk)ρ0∂k

+
1
4k2 (k + εω)2(k − εω)ρ0∂

2
k

]
∓1
3
iγ3 [(−3(k2 − ω2)2

−4ε
k
(k2 − ω2)(k2 + εkω − ω2)

+4(ω − εk)(2ω + εk)

−4
(
2εk + ω − 2εω

2

k

)
− 5− 4ε

k

)
ρε

+(ε(k2 − ω2)2 + 2(k + ε)(k2 − ω2) + 2k + ε)ρε∂k

+
(
3
k2 (k + εω) + 4

ω

k3

)
(k2 − ω2)ρ0

+
1
k2 (ω − εk)(k + εω)2ρ0∂k

]]
+ . . .

]
ρ′

t. (33)

This expression is quite long because these two terms are
more involved. However, there are no new steps worth
discussing in detail.

4.2. Calculation of Im ∗Σ2(P )

Now we turn to calculating the imaginary part of ∗Σ2(P )
which can be written from (12) and the structure of the
gluon propagator in the strict Coulomb gauge as

∗Σ2(P ) = − 8
T 2T

∑
k0

∫
d3k

(2π)3

∫
dΩs

4π
iS/

KSPSQS

× [ ∗∆l(K)− (1− k̂.̂s2) ∗∆t(K)]. (34)

The steps to carry are similar to the ones we used for the
previous contribution. But here we need the additional
expansion

1
QS

=
1

iq0 − k̂.̂s

[
1− p̂.̂s

iq0 − k̂.̂s
− p̂.̂s2

(iq0 − k̂.̂s)2
+ . . .

]
.

(35)

The angular integrals over the solid angles Ωs and then
Ωk are done as usual. We obtain for the longitudinal gluon

∗Σ2l(P ) = − 4
π2T 2T

∑
k0

∫ +∞

η

kdk

×
[
γ0 1
p2
0
Q′

0k + iγ
3 p

3

[
2
ip3

0
Q′

0k − k

p2
0(q

2
0 + k2)

]
+γ0 p

2

p2
0

[
− 1
p2
0
Q′

0k − 2k
3ip0(q20 + k2)

+
iq0k

3(q20 + k2)2

]
+ . . .] ∗∆l(k0, k), (36)

and for the transverse one

∗Σ2t(P ) = − 4
π2T 2T

∑
k0

∫ +∞

η

dk
k

×
[
−γ0 1

p2
0
(q20 + k2)Q′

0k

−iγ3 2p
3p2

0

(
1
ip0
(q20 + k2) + iq0

)
Q′

0k

+γ0 p
2

p2
0

[(
1
p2
0
(q20 + k2)− 4iq0

3ip0
+
1
3

)
Q′

0k +
iq0k

3(q20 + k2)

]
+ . . .] ∗∆t(k0, k), (37)

where Q′
0kstands for Q0 (iq0/k). The sum over the bosonic

k0 is now readily done if we add to the spectral represen-
tations (29) those of 1/(q20 + k2) and 1/(q20 + k2)2. We
have

1
(q20 + k2)

=
∫ 1/T

0
dτeiq0τ

∫ +∞

−∞
dωε(ω)δ(ω2 − k2)

× (1− ñ(ω))e−ωτ ,

1
(q20 + k2)2

=
∫ 1/T

0
dτeiq0τ

∫ +∞

−∞
dωε(ω)δ(1)(ω2 − k2)

× (1− ñ(ω))e−ωτ , (38)

with q0 fermionic. ε(ω) is the sign function and δ(1)(ω2 −
k2) stands for ∂ω2δ(ω2 −k2). The extraction of the imagi-
nary part is straightforward. We obtain for the longitudi-
nal contribution

Im ∗Σ2l(P ) = − 4
πT

∫ +∞

η

dk
∫ +∞

−∞
dω
∫ +∞

−∞

dω′

ω′

×δ(ω± − ω − ω′)
[−γ0kρ0

+
p

3
[±2γ0kρ0 + iγ3(−2kρ0 + k2ε(ω)δ(ω2 − k2))]

+p2
[
γ0
(

−2k
3
ρ0 +

2k2

3
ε(ω)δ(ω2 − k2)

−k2

3
ωε(ω)δ(1)(ω2 − k2)

)
∓1
3
iγ3
(

−2kρ0 +
2k2

3
ε(ω)δ(ω2 − k2)

)]
+ . . .] ρ′

l, (39)
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and for the transverse one

Im ∗Σ2t(P ) = − 4
πT

∫ +∞

η

dk
∫ +∞

−∞
dω
∫ +∞

−∞

dω′

ω′

×δ(ω± − ω − ω′)
[
γ0 1
k
(k2 − ω2)ρ0

+
p

3

[
∓γ0 2

k
(k2 − ω2)ρ0 + iγ3 2

k
(k2 + ω − ω2)ρ0

]
+p2

[
γ0
(
2
3k

(
k2 − 1

2
+ 2ω − ω2

)
ρ0

−ω

3
ε(ω)δ(ω2 − k2)

)
∓ iγ3 2

3k

(
k2 +

2
3
ω − ω2

)
ρ0

]
+ . . .] ρ′

t. (40)

The final result we aim at is the sum of the six terms:

Im ∗Σ(P ) =
∑

ε=±,i=l,t

Im ∗Σεi(P ) +
∑
i=l,t

Im ∗Σ2i(P ),

(41)
where the different contributions are given in (32), (33),
(39) and (40). To get the damping rates γ±(p), we use (9)
where ∗f± = ∗D0 ∓ ∗Ds and ∗Σ = γ0 ∗D0 + iγ.p̂ ∗Ds.
There are a few more steps though. Indeed, note that the
energy ω±(p) appearing in δ(ω± − ω − ω′) is a function
of p, given in (5) for small p. This means that for the
terms in p2, the energy ω±(p) can be replaced by one (in
units of mf ) since we look for the damping rates up to
order p2, but for the terms of order p we have to expand
δ(ω± − ω − ω′) to order p and for the terms of order zero
to order p2. A subsequent rearrangement is necessary.

5. Results and conclusion

The damping rates are given in (9). We find

γ±(p) = −g2CfT

8π

[
a0 ± p

3
a1 +

p2

9
a2 + . . .

]
, (42)

where the coefficients ai are given by the expressions

a0 =
∫ ∞

η

dk
∫ +∞

−∞
dω
∫ +∞

−∞

dω′

ω′ f0(ω, ω′; k)δ;

a1 =
∫ ∞

η

dk
∫ +∞

−∞
dω
∫ +∞

−∞

dω′

ω′ [f1(ω, ω′; k)

− f0(ω, ω′; k)∂ω]δ,

a2 =
∫ ∞

η

dk
∫ +∞

−∞
dω
∫ +∞

−∞

dω′

ω′ [f2(ω, ω′; k)

− f1(ω, ω′; k)∂ω

+ f0(ω, ω′; k)[−3∂ω + ∂2
ω]]δ, (43)

with δ = δ(1−ω−ω′). The three functions fi(ω, ω′; k) are
given by the following expressions:

f0(ω, ω′; k) =
∑
ε=±

[−k2(1− εk + ω)2ρερ
′
l

+
1
2
(1 + 2εk + k2 − ω2)2ρερ

′
t

]
+
1
k
(k2 − ω2)ρ0ρ

′
t. (44)

This expression is the one obtained in [38,39]. f1 and f2
are new. They read

f1(ω, ω′; k) =
∑
ε=±

[
2k2(−1 + k2 − 2εkω + ω2)ρερ

′
l

+(−2ε
k

− 3 + 2εk + 4k2 − k4 − (2 + 4εk + 2k2)ω

+
(
4ε
k
+ 4 + 2εk + 2k2

)
ω2

+2ω3 −
(
2ε
k
+ 1
)
ω4
]
ρερ

′
t

+εk2(1− εk + ω)2ρε∂kρ
′
l

+
(ε
2
+ 2k + 3εk2 + 2k3 +

ε

2
k4

−(ε+ 2k + εk2)ω2 +
ε

2
ω4
)
ρε∂kρ

′
t]

−2
k

(
k2 − ω2 + 2

ω3

k2

)
ρ0ρ

′
t

−2k2ε(ω)δ(ω2 − k2)ρ′
l

+
ω

k2 (ω
2 − k2)ρ0∂kρ

′
t + 2ωρ0∂kρ

′
l, (45)

and

f2(ω, ω′; k) =
∑
ε=±

[(
−9
2

− k2 − 6εk3 − 1
2
k4

−(6εk − 6k2 + 2εk3)ω

+(9 + k2)ω2 + 6εkω3 − 9
2
ω4
)
ρερ

′
l

+
(
9
2k2 − 14ε

k
− 8
3
+ 4εk − 19

2
k2 − 6εk3 + k4

+
(−3
k2 +

25ε
k

− 10 + 6εk + 9k2 − 3εk3
)
ω

+
(

− 6
k2 +

2ε
k
+ 23− 6εk + k2

)
ω2

+
(
6
k2 − 22ε

k
− 6 + 6εk

)
ω3 +

(
− 3
2k2 +

12ε
k

− 5
)
ω4

−
(
3
k2 +

3ε
k

)
ω5 +

3
k2ω

6
)
ρερ

′
t

−k(9− 14εk + 5k2 + (12− 2εk − 6k2)ω
−(3− 12εk)ω2 − 6ω3)ρε∂kρ

′
l

+
(
3
2k
+ 4ε+ 7k + 8εk2 +

7
2
k3

−
(
3
k
+ 6ε+ 6k + 6εk2 + 3k3

)
ω

−
(
3
k
+ 4ε+ 5k

)
ω2 +

(
6
k
+ 6ε+ 6k

)
ω3 +

3
2k
ω4
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−3
k
ω5
)
ρε∂kρ

′
t − 3

2
k2(1− εk + ω)2ρε∂

2
kρ

′
l

+
(
3
4
+ 3εk +

9
2
k2 + 3εk3 +

3
4
k4

−3
2
(1 + 2εk + k2)ω2 +

3
4
ω4
)
ρε∂

2
kρ

′
t

]
−3
k
(k2 − ω2)ρ0ρ

′
l

+
(
3
k
+ 2k +

6
k
ω −

(
15
k3 +

2
k

)
ω2 +

18
k3ω

3
)
ρ0ρ

′
t

+(6− 12ω)ρ0∂kρ
′
l

+
(

−3 + 6kω + 3
k2ω

2 − 6
k
ω3
)
ρ0∂kρ

′
t + 3kρ0∂

2
kρ

′
l

− 3
2k
(k2 − ω2)ρ0∂

2
kρ

′
t

+12k2ε(ω)δ(ω2 − k2)ρ′
l − 6|ω|δ(ω2 − k2)ρ′

t

−6k2|ω|∂ω2δ(ω2 − k2)ρ′
l. (46)

It remains to perform the integrals over the frequen-
cies ω and ω′ and then over the momentum k. Of course,
these integrations are not straightforward and necessitate
numerical work [40]. Also, the dimensionless parameter

m(Nc, Nf ) = mg/mf =
4
3

√
Nc(Nc +Nf/2)

N2
c − 1

is implicitly present in the spectral densities ρl,t and so,
each case has to be treated separately.
Recall that this direct calculation is performed in the

sole context of the Braaten–Pisarski HTL-summed next-
to-leading order perturbation. As we emphasized in the
introductory remarks, there is the problem of the occur-
rence of infrared divergences. Hence, extra work is needed
in order to extract these from the finite contributions. One
interesting point is what sort of divergences we will obtain.
Indeed, in the direct calculation of γl(0), the damping rate
for longitudinal gluons with zero momentum, the diver-
gent term behaves like 1/η2 [35]. In the second coefficient
in p2 of γt(p), the damping rate for transverse gluons, 1/η2

does also appear together with ln η [37]. The question is
then: what sort of divergences will we get for γ±(p)? If
different from 1/η2 and ln η, are we able to understand
why?
We stress once again that the occurrence of these diver-

gences may simply be due to the early expansion we make
of the HTL-summed next-to-leading order self-energies in
powers of the external momentum. We have argued oth-
erwise in Sect. 3, but a really more convincing argument
would be to carry the very same calculation through in
a way that avoids such an early expansion. We have in-
dicated that, in the perturbative context, this could be
technically very difficult.
In any case, there is by now convincing evidence in

the literature that next-to-leading order quantities are
magnetic-sensitive. We tend to the viewpoint that the
occurrence of infrared divergences in HTL-summed next-
to-leading order self-energies is probably a manifestation

of this magnetic sensitivity, and that a more complete
next-to-leading order calculation should remove them. We
mean a calculation that takes into account magnetic ef-
fects not present at the electric scale, and hence not in-
corporated in the hard thermal loops. Of course, we may
need to understand first such effects. It is then interesting
to ask whether the infrared divergences one obtains, in the
damping rates and in possibly similar quantities can be of
any help. It may also be that these effects cannot even be
grasped perturbatively.
Also, we have argued in Sect. 3 that regularizing the

infrared region with a simple shift in the static transverse-
gluonic propagator by a momentum-independent magnetic
mass may not be the best way to shield from magnetic sen-
sitivity. This is important in view of the fact that many of
the results of high-temperature QCD rely on such a reg-
ularization. In our work, we exclude from the outset the
magnetic region by introducing an infrared cut-off of the
order of the magnetic scale. One drawback is that our cal-
culation is valid only for very soft external momenta and
the results we obtain cannot be carried to larger values.
That our results differ analytically from other estimations,
particularly those relying on the magnetic-mass shielding,
comes mainly from the regularization procedure and its
implications. Also, the difference in the results accentu-
ates the sensitivity of the HTL-based perturbation to the
magnetic scale and is further evidence that possibly inter-
esting physics is to be found between the soft and very
soft regions.
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